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FRAMES AND ORTHONORMAL BASES FOR VARIABLE
WINDOWED FOURIER TRANSFORMS
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Louis L. Scharf

!Dept. of Electrical and Computer Engineering University of Colorado, Boulder, CO 80309

ABSTRACT

We generalize the windowed Fourier transform to the
variable-windowed Fourier transform. This generalization
brings the Gabor transform and the wavelet transform un-
der the same framework. Using frame theory we character-
ize frames and orthonormal bases for the variable windowed
Fourier series (VWFS). These characterizations are formu-
lated explicitly in terms of window functions. Therefore
they can serve as guidelines for designing windows for the
VWFS. We introduce the notion of “complete orthogonal
support” and, with the help of this notion, we construct a
class of orthonormal VWFS bases for L*(R*).

1. INTRODUCTION

The Gabor transform [5] (or the windowed Fourier trans-
form) is a widely used tool in signal processing. This trans-
form uses a single window for the purpose of Fourier trans-
forming a signal locally. This process is repeated while shift-
ing the window through the real line. This single window
shifting and modulation mechanism of the Gabor transform
produces some undesirable effects [1, 6, 2].

In this paper we generalize the Gabor transform (or
the windowed Fourier transform) to the variable windowed
Fourier transform (VWFET). In this generalization, we relax
the constraint of a single shifting window by allowing a set
of windows. The implications of such a generalization are
manifold. First, the control over windows is increased so
that it is possible to design windows to get a tight frame or
even an orthonormal basis. Secondly, it is possible to em-
ploy a parametric family of windows with useful properties
[9]. Third. the VWFS can be made equivalent to a wavelet
transform in the frequency-domain.

The VWFT comes in four varieties, just as the Fourier
transform does. Adopting the convention of Fourier analy-
sis, we call them the continuous VWFT or simply VWFT,
the VWFS, the VWDTFT, and the VWDFT (7). In this
paper we will only deal with the VWFS. We derive the
condition for the existence of VWFS frames under a mild
assumption. When a frame exists, we give formule for dual
frames, tight frames, and orthonormal bases. Of course we
also give the inverse transform. We also present several
examples of frames and orthonormal bases for the VWFS.

In constructing orthonormal bases for the VWFS, we
have found the concept of “complete orthogonal support”
to be useful. C. Wei and D. Cochran bring up the concept

of “orthogonal support” and use this concept to construct
Bandlimited Orthonormal Wavelet sets [11]. An orthogo-
nal support is basically a support set which never overlaps
with its diadic dilations. We need a support which is not
only orthogonal but also“complete”. We will formalize the
notion of “complete” in a later Section. In [11] a construc-
tion of an n-band orthogonal support is given, which is in
fact complete. We show, with some small constraint, that a
complete n-band orthogonal support leads to an orthonor-
mal basis for the VWFS.

The remainder of this paper is organized as follows: In
Section 2 a brief review of frames is presented. In Sec-
tion 3 we introduce orthogonal support, complete orthog-
onal support, and a construction of a complete orthogonal
support. Then the VWFT and VWFS are defined in Sec-
tion 4. Characterizations of VWFS frames, dual frames,
tight frames, and orthonormal bases are given in Section 5.
Some examples of frames and orthonormal bases for VWFS
are presented in Section 6.

2. A BRIEF RIEVIEW OF FRAMES

In this section, we briefly review some generalities about
frames. Theorems are stated without proofs. For more
detailed treatments of frames, refer to [3, 12].

A frame is a set of dependent or indeperdent vectors
which can be used to write an explicit expansion for every
vector in the space. An orthonormal basis is just a special -
frame. The definition of frames is given as follows.

Definition 1 (Frames) A set of vectors (#r)ek in @
Hilbert space 'H 1s called a frame if there exist constants
A>0,B < oo so that forall f in H

AP < SN0 < BIIFI )
kek
A and B are called frame bounds. ]

If the two frame bounds are equal, namely A = B, then
the frame is called a tight frame.

Definition 2 (Frame Operators) The frame operator
S : H — H is defined as

5F=3(f.6x) b (2)
kek




Theorem 1 (Dual Frame) Let (¢x),cx be a frame in H

with lower bound A and upper bound B and let q;k =8"1¢s.
Then (d”‘)kek is also a frame in M with lower bound B!

and upper bound A™*. u]
The family (‘z“)kek is called the dual frame of (¢x), k-

Theorem 2 (Frame Expansions) Let (¢k)kek be a

frame in ‘H with (J”‘)kek its dual frame. Then for all f
in H, the following is true:

Z(f’¢k)<f;k=f=z<f,$k>¢k- (3)
kek kek
— m]
Theorem 3 (Orthonormal Basis) If (¢x), ck is a tight

frame, with frame bound A = 1, and if ||¢k|| = 1 for all
k €k, then (¢“)kek constitute an orthonormal basis. D

3. ORTHOGONAL SUPPORT

A support is a union of disjoint intervals. A support is
orthogonal if its diadic dilations never overlap. We borrow
the following definition from [11].

Definition 3 (Orthogonal Support) Let a support So
be the union of N disjoint intervals

So = [30,81] U [s2,83] U -+~ U [s2n—2, 52N 1] (4)
and let S;, be the m-th dilation of So:

Sm = [80277,5127 U [8227 ", 5327 "U- U

[s2v =227, 82127 ™] (5)

If the measure of S ﬂSm: is zero for all integers m # m’,
So is an orthogonal support.
O

We now formalize the notion of “complete”. A support is
complete if the union of all its diadic dilations is the support
of the underlying Hilbert space.

Definition 4 (Complete Orthogonal Support) In

some Hilbert space H, So is called a complete orthogonal
support if Sp is an orthogonal support and UmGZ Sm =
supp(H). o

A construction of an orthogonal support is given in [11].
An orthogonal support thus constructed is indeed orthogo-
nal and .moreover, complete for H where Supp(H) = R*.
For convenience we modify the result of Wei and Cochran
{11] into the following Theorem:

Theorem 4 (Orthogonal Support) Let Supp(H) =
R*. Consider real numbers 0 < <1 << eN = 2¢p.
Then

[(‘o, '2(‘0] = [Co, Cl) U [C), C2] U.-.uU [CN-],ZC()}
Let q1.q2,---, qu be distinct integers and form Sp:

So = [c02¥,6:2")U 129, ¢22%?]U - U
[en=129%,2¢p29V] (6)

[s0.81]U[s2,83) U - U[san—z,825-1] (7)

]

Then So is an N-band orthogonal support for H. w}

4. VWFT AND VWFS

Definition 5 (VWFT) In some Hilbert space H C L*(R)
the VWFT of f(1) is

(Fof)w,n) = (f dun) (8)

= (f(),pa(t)e™) ©)

where {pn(t)} is a set of window functions, n € some index
set which can be continuous or discrete. w}

Examples are: (1) For H = L*(R), if pn(t) = g(t—n) and
n € R then the VWFT specializes to the continuous Gabor
transform. (2) For H = L*(R*), if pn(2) = ¥*/%(t;n, @),
where ¥(t; n, a) is the gamma probability density function
of degree n with parameter «, then the VWFT specializes to
the continuous Gamma transform [9]. (3) For H = L*(R),
if pn(t) = |n|'/?¢(nt),$(0) = 0 and = € R, then the
VWEFT is equivalent to a continuous wavelet transform in
the frequency-domain.

To proceed from a VWFT to a VWFS one needs to sam-
ple frequency. Since we now allow a variable set of window
functions {p,(t)}, we expect this frequency sampling to be
dependent on pn(?).

Definition 6 (VWFS) In some Hilbert space H the
VWFS of f(t) is

(Fof)(m,n)

(F(0), pn(t)e’™ ") (11)

where {pn(t)} is a set of window functions, m € Z, n €
some discrete set, and w, > 0. 0

We call w,, the fundamental frequency associated with the
window p,(t) and mwy, the m-th harmonic of the fundamen-
tal frequency. Two especially interesting ways of determing
fundamental frequency are: (1) wn = wo (homogeneous
fundamental frequency) and (2) wn = woo§,00 > 1 (ex-
ponential fundamental frequency). The Gabor transform
is a homogeneous VWFS and the wavelet transform in the
frequency-domain is an exponential VWFS. This brings the
Gabor transform and the wavelet transform under the same
framework.

5. FRAMES AND ORTHONORMAL BASES
In this section we characterize frames, dual frames, tight
frames, and orthonormal bases for the VWFS assum-

ing the frequency sampling is exponential. The homo-
geneous VWFS has been treated separately in [10]. We
shall assume p,(t) = a{','/zw(a'(,‘t) and therefore ¢pm, =
og’2w(06’t)e’m“’°”3'. The Fourier transform of ¢y is the
mn-th wavelet in the frequency domain.

In order to make the characterization simple and useful,
we need the following assumption:

Supp(w(t)) < 2= (12)

Theorem 5 (Frames) With assumption (12), if there ez-
ist constants0 < C < D < oo and 0o > 1 such that

C<Y WY <D fortetoo]  (13)
nez




then {¢mn} constitute a frame with frame bounds (27r/wo)C
and (2w /wo)D.

Proof:
Y UFef)(m, )

=2

mn

2

/ dtf(t)pn(t)e™™n"

2r

wn ; 27 A 2T
_ —jmwnt
= E /0 dte E @+ IW—-’l Ypn(t + Iw,,)
mn zeZ
2

= / dt th+l—)pnt+l——)

1eZ

- Z 2n Z/ dtf( z)f(t+1—)pn( )pn(t“___)

n 1eZ

With pa(t) = o§/2¢(03t), wn = wooy, and assumption
(12), the RHS of last equation becomes

27
w | dtlf WF Y (sl

neZ
But C < " [|#(a5t)|* < D for t € [1,00), hence

(2r/wo)CISIP <D {f, dmn)l? < (27/wo) D] fII”

mn

Theorem 6 (Frame Operator) Suppose eq(13) is true,
and assumption (12) holds. Then the frame operator S of
an crponentil VIWFES is

= ;_: g [o(ont)2I (14)
m]
Proof:
Sf(t)
= > (f.0mn)bmn

T -
= / dsf(s)zmpn(t)zemw"('-s)
= / dsf(s )ZPn(S)Pn“)Z—5(t—s—r—)

= Y Iy qu- rf)pn(f - r;E)Pn(‘)

Since pn(t) = a"lzw(a(?t), wn = woog, and assumption (12)
holds, the RHS of last equation becomes

27 n
; % (oB 1) £(2)

Therefore S = 22 5~ 7 |4(o5t)|°I. [ |
The dual frame éﬁ;; of the VWFS is
;b::;(t) = S_1¢mn(t) ‘ (15)

Theorem 7 (Tight Frames) Suppose eq(18) is true, and
assumption (12) holds. Then ¢mn constitute a tight frame
with frame bound %fc if and only if

> lw(oBt)? = ¢ for t € [1,00) (16)
neZ
Furthermore if |||l = 1 and ZZ¢ = 1, {¢mn} constitute an
orthonormal basis. 0o
Proof: This is true because of Theorem 6 B

Theorem 8 (Inverse VWFS) Suppose eq(13) is true,
and assumption (12) holds. Then the inverse VWFS is

1
f(t) = 37 . <f1 ¢mn>¢mn (17)
o ST DD
m]
Proof: This is true because of Theorem 2. B

6. EXAMPLES

In this Section we present some examples of frames, tight
frames, and orthonormal bases for the VWFS. All examples
are for H = L*(R1).

6.1. A Frame

Let ¢x(t) = +'/%(t;k,2) with y(t;k,2) the gamma pdf
with degree k and parameter 2. Note that ||¥(¢)|| =
Let pa(t) = "/211)(0(',’0 for some oo > 1 and therefore
Smn = op/*W(opt)e?™ 0% We have shown in [8] that
{¢mn} constitute 2 VWFS frame which is nearly tight for
a fairly wide range of k¥ and oo. This VWFS resolves
causal signals onto the complex frequency plane and has
very good time-frequency resolution. Each frame vector
®mn can be rearranged as a complex exponential with “de-
lay” k and “damping” oo. Therefore this VWFS works like
infinite-dimentional modal analysis using complex exponen-
tial modes. Note that v¥x(t) is not finite support. Thus the
Theorems in Section 5. are not applicable here.




6.2. Non-overlapped ON bases

By Theorem 3, to design an orthonormal basis for the
VWES is to seek a tight frame with unit bound and unit
norm windows. If a window has finite support, then by
Theorem 7, (16) becomes a sufficient condition for an or-
thonormal basis. Note that (16) is essentially a requirement
that the windows partition unity. The requirement of (16)
is especially easy to achieve when the windows do not over-
lap. '

Theorem 9 (Non-overlapped ON bases)
Consider real numbers 0 < ¢g < ¢; < -+ < en = 2¢o.

Then

[co,2¢0] = [co, c1] U [e1, 2] U--- U fen—1,2¢0]

let di = cx — ck—1 for 1 < k < N. If dx = 2% ¢q for some
integer I, then {¢% .11, constitute an orthonormal basis
for L*(R*) where

$rn = 2MgR(2n)e™ 0 for 1<k < N
2r
wo = ——
Co

1 .
d)k(t) = \ ’ Z;X[Ck_IQ—lk,ck2—lk]eJek(t)

Xiab] 1S  the characteristic function on interval [a,b)]
0x(t) is an arbitary finitely oscillatory phase function,
taking only values 0 or «, that turns ¢ into

a sequence of polarity-switched square pulses.
O
Proof: let ¢1,¢2,---, ¢~ be distinct integers and form So

S5 = [C():.’q1 , lelql] U [C]qu, Cz'.’q",] U-.-u
[enN=129N,2¢027V]
= [s0,51]U[s2,83] U---U[san—2,82n-1]

= SjuSiu---uSy
From Theorem 4

So is a complete orthogonal support for LQ(R+)
=  sois {S5.55,---,50}

=  sois {53'2_(‘““’), 5(2)’2—(<72+’2), o Sévg"(‘?N‘HN)}

= sois {[c02-l’,c12"‘], [c12"’,cz2_'2],.. .,

[C,ﬂv_l'.’_lN , CN2—'N]

.k 1 Oy (t
Let vi(t) = \/ ;X[u—x?"k.ck2""]ej (0

Clearly. supp({t:'k(‘.?"t)}f=,) tesselate R*. Furthermore
5O = 1 and |¢F(2"))? = 21-0- = £2. Therefore
{¢%..}i-, constitute an orthonormal basis for L*(RY). K

Example 1 By Theorem 9 {¢mn} is an orthonormal basis
in LX(R*) for N = 1,¢0 = 1,d; = 1,wp = 27 ,and ¥(t) =
X[1,2]-

Example 2 By Theorem 9 {¢%,,}3_, is an orthonormal
basis in LQ(R+) for N=3,co=1,d1 = 1/4,d2 = 1/2,d3 =
1/4,wo = 2m,and ' (1) = xpa5),%(t) = X[s/2,7/2),%°(t) =
X[7,8]-

6.3. Overlapped ON bases

Note that all orthonormal bases promised by Theorem 9
have square-wave shape. This follows from the requirement
that windows do not overlap. Without this constraint It is
possible to construct smooth orthonormal VWFS bases.
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